

Fecha: 19-09-2024

Medio: La Estrella de Chiloé

Sunt : La Estrella de Chiloé

Supl. : La Estrella de Chiloé Tipo: Noticia general

Título: Los microbios convierten el dióxido de carbono en proteinas y vitaminas

Cm2: 452,2 VPE: \$ 279.037

Pág.: 13

Tiraje: Lectoría: Favorabilidad:

8.400

2.800

No Definida

TENDENCIAS

Los microbios convierten el dióxido de carbono en proteínas y vitaminas

Es un proceso de fermentación igual al de la cerveza, pero en vez de dar azúcar a los microbios, se les da gas y acetato.

Agencia EFE Medios Regionales

na nueva tecnología experimental que funciona con energía renovable permite obtener proteínas y vitamina B9 a partir de microbios que se alimentan con hidrógeno, oxígeno y CO2 (dióxido de carbono), según un estudio que publica Trends in Biotechnology.

Se trata de un proceso de fermentación similar al de la cerveza, pero en lugar de dar azúcar a los microbios, se les da gas y acetato, explica el responsable del equipo investigador, Largus Angenent, de la Universidad de Tubinga (Alemania).

Esta tecnología podría servir, en un futuro, para producir una alternativa proteínica sostenible y enriquecida en micronutrientes, aunque aún queda mucho por hacer para llegar a ese punto.

Las levaduras pueden producir vitamina B9 por sí solas con azúcar, pero los investigador se plantearon si se podría lograr lo mismo usando acetato.

El equipo diseñó un sistema de biorreactor de dos

ESTA TECNOLOGÍA PODRÍA SERVIR A FUTURO PARA PRODUCIR UNA ALTERNATIVA PROTEÍNICA SOSTENIBLE.

etapas que produce levadura rica en proteínas y vitamina B9. Esta última también se conoce como folato y es esencial para funciones corporales como el crecimiento celular y el metabolismo.

En la primera etapa, la bacteria Thermoanaerobacter kivui convierte el hidrógeno y el CO2 en acetato, que se encuentra en el vinagre, después la Saccharomyces cerevisiae, más conocida como

levadura de panadería, se alimenta de acetato y oxígeno para producir proteínas y vitamina B9.

Los expertos explicaron que el hidrógeno y el oxígeno pueden producirse golpeando en el agua con electricidad a raíz de fuentes de energía limpias como, por ejemplo, los molinos de viento. El resultado fue que las levaduras alimentadas con acetato producen casi la

misma cantidad de vitamina B9 que las que comen azúcar, con 6 gramos de la levadura seca recolectada se cubren las necesidades diarias de vitamina B9.

En cuanto a las proteínas, los niveles de la levadura superan a los de la ternera, el cerdo, el pescado y las lentejas. Ochenta y cinco gramos, o 6 cucharadas soperas, de levadura proporcionan el 61% de las necesi-

dades diarias de proteínas, mientras que la ternera, el cerdo, el pescado y las lentejas cubren el 34 %, 25%, 38% y 38% de las necesidades, respectivamente.

Sin embargo, la levadura debe tratarse para eliminar los compuestos que pueden aumentar el riesgo de gota si se consume en exceso. Una vez tratada, tratada satisface el 41% de las necesidades diarias de proteínas, comparable a las fuentes tradicionales de proteínas.

"Nos acercamos a los 10.000 millones de personas en el mundo, y con el cambio climático y los limitados recursos de tierra, producir suficientes alimentos será cada vez más difícil", agregó.

Por ello, una alternativa es "cultivar proteínas en biorreactores mediante biotecnología en lugar de cultivar para alimentar animales. Hace que la agricultura sea mucho más eficiente", señaló Angenet en la revis-

Además, al funcionar con energía limpia y CO2, el sistema reduce las emisiones de carbono en la producción de alimentos y también desvincula el uso de la 66

Nos acercamos a los 10.000 millones de personas en el mundo (...) Producir suficientes alimentos será cada vez más difícil".

Largus Angenent, investigador.

tierra de la agricultura, liberando espacio para la conservación.

El investigador subrayó que no hará la competencia a los agricultores, sino que esta tecnología les ayudará a concentrarse en producir verduras y cultivos de forma sostenible.

Ahora, el equipo planea optimizar y ampliar la producción, investigar la seguridad alimentaria, realizar análisis técnicos y económicos y calibrar el interés del mercado. ©

