

Fecha: 10-10-2024 2.400 Pág.: 12 Tiraje: Cm2: 437,3 VPE: \$362.950 Medio: Crónica de Chillán Lectoría: 7.200 Crónica de Chillán Favorabilidad: Supl.: No Definida

Noticia general Tipo:

Título: NOBEL DE QUÍMICA POR REVELAR CÓDIGOS DE PROTEÍNAS MEDIANTE INTELIGENCIA ARTIFICIAL

NOBEL DE QUÍMICA POR REVELAR CÓDIGOS DE PROTEÍNAS MEDIANTE INTELIGENCIA ARTIFICIAL

ESTOCOLMO. David Baker, John M. Jumper y Demis Hassabis descifraron el código de las estructuras de las proteínas con computadores e inteligencia artificial.

Efe

I Nobel de Química pre- mió a los estadounidenses David Baker y John M. Jumpery al británico Demis Hassabis por descifrar el código de las estructuras de las proteínas a través del uso de la computación y la inteligencia artificial (IA).

Hassabis y Jumper utilizaron la IA para predecir la estructura de casi todas las proteínas conocidas; Baker desarrolló métodos computerizados para crear proteínas que no existían previamente y, en muchos casos, con nuevas funciones, señaló en su motivación la Real Academia de las Ciencias sueca.

Sus hallazgos permiten una mejor comprensión de las funciones vitales humanas, entre ellas el porqué de algunas enfermedades y la forma en que ocurre la resistencia antibiótica; así como la creación de nuevos nanomateriales, minisensores y una industria química menos contaminante, además de acelerar el desarrollo de vacunas.

Las proteínas son las moléculas que hacen posible la vida; los ladrillos que forman los huesos, la piel; los motores que impulsan nuestros músculos; las máquinas que leen, copian y reparan el ADN; las que mantienen nuestras neuronas y nuestro cerebro listos, anticuerpos que permiten nuestra respuesta inmunitaria.

Así lo resumió Johan Aqvist de la Academia Sueca de Ciencia para explicar el premio y agregó que "para entender cómo funciona la vida, primero tenemos que comprender la forma de las proteínas.

El experto indicó que el premio de este año "ha abierto un mundo completamente nuevo de estructuras de proteínas: Unas que se sabía que existían, pero no cómo eran, y otras que se diseñan desde cero, que no existen en la naturaleza, pero "que pueden hacer todo tipo de cosas maravillosas".

Baker, que intervino por teléfono durante la rueda de prensa, se dijo "profundamente honrado" por el galardón y entusiasmado por "todas las formas en que el diseño de proteínas puede hacer del mundo un lugar mejor", por ejemplo en el ámbito de la salud o la medicina.

La Real Academia recuerda que no se pudo empezar a explorar en detalle las proteínas hasta la década de 1950, con la aparición de la cristalografía con rayos X, una herramienta que permitió producir imágenes de unas 200,000 proteínas distintas a lo largo de los años.

Hallazgos posteriores revelaron que la estructura tridimensional de las proteínas está determinada por la secuencia de aminoácidos en ellas, por lo que si se conociese ésta, se podría predecir aquélla, lo que se convirtió en uno de los

la Evaluación Crítica de las Técnicas para la Predicción Estructural Proteica (CASP), un experimento mundial bienal comunitario para lograr predecir la estructura de las proteínas, que sin embargo apenas registró avances durante más de dos décadas.

PIONERO EN USO DE LA IA

Demis Hassabis, un experto en neurociencia, cofundó en 2010 DeepMind, una compañía dedicada al desarrollo de modelos de IA para juegos de mesa y que fue vendida al gigante tecnológico Google cuatro años más tarde.

En 2018 Hassabis inscribió a su firma en el CASP, logrando con su modelo de IA AlphaFold

grandes retos de la bioquímica.

En 1994 se puso en marcha

un experto en proteínas, en el equipo de Hassabis y el uso de transformadores, redes neuronales artificiales recién descubiertas, les permitió dos años después dar un salto cualitativo con AlphaFold2, cuyos resultados eran tan buenos como los de la cristalografía pero mucho más rápidos: lo que antes tardaba años, ahora se puede lograr en pocos minutos.

Google DeepMind ha compartido públicamente el código para AlphaFold2, que ha sido usado hasta hora por más de dos millones de personas de 190 países.

Después de obtener un éxito importante en el CASP de 1998, con mejores resultados que la mayoría, se le ocurrió usar el software a la inversa: en vez de introducir secuencias de aminoácidos en Rosetta v sacar de ahílas estructuras, podría lograr propuestas de secuencias a partir de una estructura deseada y crear proteínas completamente nuevas.

Fue así como pudo construir su primera proteína, llamada Top7 y distinta a cualquier otra va existente, el primer caso de lo que el Comité nario desarrollo".

Años más tarde se dio cuenta, lo que facilitó la creación de más y más nuevas proteínas.

David Baker se doctoró en la Universidad de California en 1989 y ejerce la docencia actualmente en la de Washington.

Hassabis estudió en el University College London y es director ejecutivo de Google DeepMind. Ahí también trabaja John M. Jumper, que estudió en la Universidad de Chicago.

Baker se lleva la mitad de lo dotación del premio, que este año asciende a 11 millones de coronas suecas (1.1 millones de dólares); Hassabis y Jumper se dividirán la otra mitad. Os

