

Pág.: 11 Cm2: 293,8 Fecha: 08-07-2024 Tiraje: 10.000 Medio: El Sur Lectoría: 30.000 Supl.: El Sur Favorabilidad: No Definida

Noticia general

Título: Científicos chinos identifican un musgo desértico que podría sobrevivir en Marte

Cráteres producidos por impactos de meteoritos en Marte.

Científicos chinos identifican un musgo desértico que podría sobrevivir en Marte

Investigadores del Instituto de Ecología y Geografía de Xin-jiang, perteneciente a la Acade-mia China de Ciencias, han identificado una especie de mus-go desértico, conocida como Syntrichia caninervis, que po-dría sobrevivir en las condicio-nes extremas de Marte. El equipo se centró en el estu-

El equipo se centró en el estu-dio de este musgo con el objetivo de saber más acerca de la tolerancia de los organismos en ambien-tes extremos y su habilidad para sobrevivir y regenerarse bajo con-diciones simuladas marcianas, re-

cogió el diario local Global Times. Los investigadores llevaron a

que comprobaron que el Syntri-chia caninervis puede tolerar una deshidratación celular supe-rior al 98 %, sobrevivir a temperaturas de hasta-196 "C sin pere-cer, resistir más de 5.000 Gy de radiación gamma y recuperarse rápidamente, volviendo a crecer y reverdecer, mostrando una gran resiliencia.

La investigación reveló que, ba-jo condiciones marcianas simu-ladas con múltiples obstáculos, Syntrichia caninervis aún es capaz de sobrevivir y regenerarse una vez que retorna a condiciones adecuadas.

El equipo también identificó características únicas de Syntri-chia caninervis, entre las que des-taca el hecho de que sus hojas su-perpuestas reduzcan la evaporación del agua, mientras sus pun-tas blancas de las hojas reflejan la intensa luz solar.

Además, el musgo puede entrar en un estado de hibernación me-tabólica selectiva en ambientes

tabólica selectiva en ambientes adversos y reunir la energía nece-saria para su recuperación una vez que su entorno mejora. El equipo de expertos planea realizar experimentos en naves espaciales para estudiar la res-puesta de supervivencia y las ca-

pacidades de adaptación de la es pecie bajo microgravedad y di-versas adversidades de radiación ionizante. Su objetivo es desentrañar la

base fisiológica y molecular del musgo y explorar los mecanis-mos reguladores clave de la tolerancia a la vida, con la esperan-za de que el musgo desempeñe un papel en la colonización del

un papel en la coionización del espacio exterior. China ha invertido fuertemen-te en su programa espacial y ha conseguido éxitos como alunizar la sonda Change 4 en la cara ocul-tade la Luna o ser el tercer país en llegar a Marte.

