EL MERCURIO

 Fecha:
 20/10/2024
 Audiencia:
 7.200
 Sección:
 tendencias

 Vpe:
 \$203.296
 Tirada:
 2.400
 Frecuencia:
 0

 Vpe pág:
 \$1.002.600
 Difusión:
 2.400

 Vpe portada:
 \$1.002.600
 Ocupación:
 20,28%

Pág: 11

¿POR QUÉ GUSTAN TANTO LOS CARBOHIDRATOS? LA RESPUESTA PODRÍA ESTAR EN EL ADN ANTIGUO

os humanos portan varias copias de un gen que permite empezar a descomponer el almidón de los hidratos de carbono complejos en la boca, un primer paso para metabolizar alimentos como el pan y la pasta. Pero, ¿cuándo comenzó esta expansión de genes? Un nuevo estudio apunta que hace más de 800.000 años.

Dirigido por investigadores de la Universidad de Búfalo y el Laboratorio Jackson de Medicina Genómica -ambos en Estados Unidos-, muestra cómo las primeras duplicaciones de este gen sentaron las bases de la amplia variación genética que aún existe hoy en día y que influye en la eficacia con la que los humanos digieren los alimentos ricos en almidón.

"Si alguna vez ha tenido problemas para reducir su consumo de carbohidratos, la culpa podría ser del ADN antiguo", resume un comunicado del citado laboratorio.

Los resultados de la investigación se publican en la revista Science y revelan que la duplicación del citado gen-conocido como gen de la amilasa salival (AMYI)- no solo puede haber ayudado a dar forma a la adaptación humana a los alimentos ricos en almidón, sino que puede haber ocurrido mucho antes de la llegada de la agricultura.

"La idea es que cuantos más genes de amilasa se tengan, más amilasa se puede producir y más almidón se puede digerir eficazmente", explica Omer Gokcumen, de la Universidad de Búfalo. La amilasa es una enzima que no solo descompone el almidón en glucosa, sino que también da sabor al pan.

Para llegar a sus conclusio-

nes, el equipo, también liderado por Charles Lee, usó avanzadas técnicas genómicas para cartografiar la región del gen AMYI con increíble detalle.

Analizando los genomas de 68 humanos antiguos, incluida una muestra de 45.000 años de Siberia, descubrió que los cazadores-recolectores preagricolas ya tenían una media de cuatro a ocho copias de AMYI por célula diploide, lo que sugiere que los humanos ya andaban por Eurasia con una amplia variedad de altos números de copias de AMYI mucho antes de que empezaran a domesticar plantas y a comer cantidades excesivas de almidón.

El estudio también descubrió que se produjeron duplicaciones del gen AMY1 en neandertales y denisovanos.

"Esto sugiere que el gen AMYI podría haberse duplicado por primera vez hace más de 800.000 años, mucho antes de que los humanos se separaran de los neandertales y mucho antes de lo que se pensaba", afirma Kwondo Kim, del Laboratorio Jackson.

Gokcumen añade: "Las duplicaciones iniciales en nuestros genomas sentaron las bases para una variación significativa en la región de la amilasa, lo que permitió a los humanos adaptarse a dietas cambiantes a medida que el consumo de almidón aumentaba drásticamente con la llegada de nuevas tecnologías y estilos de vida".

La investigación también pone de relieve el impacto de la agricultura en la variación de AMYI.

Mientras que los primeros cazadores-recolectores tenían múltiples copias del gen, los agricultores europeos experimentaron un aumento en el número medio de copias de AMY1 en los últimos 4.000 años, probablemente debido a sus dietas ricas en almidón.

Estudios anteriores de Gokcumen habían demostrado que los animales domesticados que conviven con humanos, como perros y cerdos, también tenían un mayor número de copias de AMYI en comparación con los que no dependen de dietas ricas en almidón. 😝